# Grade Inflation

I have been thinking a lot about teaching lately (maybe now that I will not be teaching anymore) and I hope to write a series of a few blog posts about it. My first post here will be on grade inflation, specifically whether curving is an effective way to combat it.

A popular method to combat grade inflation seems to be to impose a set curve for all classes. That is, for example, the top 25% of students get As, the next 35% get Bs and the bottom 40% gets Cs, Ds, and Fs (which is the guideline for my class). While this necessarily avoids the problem of too many people getting As, it can be a bit to rigid, which I will show below.

In the class I teach, there are ~350 students, who are spread among three lectures. I will investigate what effect the splitting of students into the lectures has on their grade. First, I will make an incredibly simple model where I assume there is a "true" ranking of all the students. That is, if all the students were actually in one big class, this would be the ordering of their grades in the course. I will assume that the assessments given to the students in the classes they end up in are completely fair. That is, if their "true" ranking is the highest of anyone in the class, they will get the highest grade in the class and if their "true" ranking is the second highest of anyone in the class they will get the second highest grade and so on. I then assign students randomly to three classes and see how much their percentile in the class fluctuates based on these random choices. This is shown below

*The straight black line shows the percentile a student would have gotten had the students been in one large lecture. The black curve above and below it show the 90% variability in percentile due to random assignment.*

We see that even random assignment can cause significant fluctuations, and creates variability particularly for the students in the "middle of the pack." Most students apart from those at the top and bottom could have their letter grade change by a third of a letter grade just due to how the classes were chosen.

Further, this was just assuming the assignment was random. Often, the 8 am lecture has more freshman because they register last and lectures at better times are likely to fill up. There may also be a class that advanced students would sign up for that conflicts with one of the lecture times of my course. This would cause these advanced students to prefer taking the lectures at other times. These effects would only make the story worse from what's shown above.

We have also assumed that each class has the ability to perfectly rank the students from best to lowest. Unfortunately, there is variability in how exam problems are graded and how good questions are at distinguishing students, and so the ranking is not consistent between different lectures. This would tend to randomize positions as well.

Another issue I take with this method of combating grade inflation is that it completely ignores whether students learned anything or not. Since the grading is based on a way to rank students, even if a lecturer is ineffective and thus the students in the course don't learn very much, the student's score will be relatively unchanged. Now, it certainly seems unfair for a student to get a bad grade because their lecturer is poor, but it seems like any top university *should* not rehire anyone who teaches so poorly that their students learn very little (though I know this is wishful thinking). In particular, an issue here is that how much of the course material students learned is an extremely hard factor to quantify without imposing standards. However, standardized testing leads to ineffective teaching methods (and teaching "to the test") and is clearly not the answer. I'm not aware of a good way to solve this problem, but I think taking data-driven approaches to study this would be extremely useful for education.

In my mind, instead of imposing fixed grade percentages for each of the classes, the grade percentages should be imposed on the course as a whole. That is, in the diagram above, ideally the upper and lower curves would be much closer to the grade in the "true ranking" scenario. Thus, luck or scheduling conflicts have much less of an effect on a students grade. Then the question becomes how to accomplish this. This would mean that sometimes classes would get 40% As and maybe sometimes 15% As, but it would be okay, because this is the grade the students *should* get.

My training in machine learning suggests that bagging would be a great way to reduce the variance. This would mean having three different test problems on each topic and randomly assigning each student one of these three problems. Apart from the logistic nightmare this would bring about, this would really only work when one lecturer is teaching all the classes. For example, if one of the lecturers is much better than another or likes to do problems close to test problems in lecture, then the students will perform better relative to students in other lectures because of their lecturer. To make this work, there needs to be a way to "factor out" the effect of the lecturer.

Another method would be to treat grading more like high school, and set rigid grade distributions. The tests would then have to be written in a way such that we'd expect the outcome of the test to follow the guideline grade distributions set by the university, assuming the students in the class follow the general student population. Notably the test is not written so that the particular course will follow the guideline grade distribution. Of course this is more work than simply writing a test, and certainly the outcome of a test is hard to estimate. Often I've given tests and been surprised at the outcome, though this is usually due to incomplete information, such as not knowing the instructor did an extremely similar problem as a test problem in class.

One way to implement this would be to look at past tests and look at similar problems, and see how students did on those problems. (Coincidentally, this wasn't possible to do until recently when we started using Gradescope). This gives an idea how we would expect students to perform, and we can use this data to weight the problem appropriately. Of course, we (usually) don't want to give students problems they'll have seen while practicing exams and so it is hard to define how similar a problem is. To do this right requires quite a bit of past data on tests, and as I mentioned earlier this isn't available. Similar problems given by other professors may help, but then we run into the same problem above in that different lecturers will standardize differently from how they decide to teach the course.

Without experimenting with different solutions, it's impossible to figure out what the best solution is, but it seems crazy to accept that curving classes is the best way. Through some work, there could be solutions that encourage student collaboration, reward students for doing their homework (I hope to write more on this in the future) instead of penalizing them for not doing their homework, and take into account how much students are actually learning.

Code for the figure is available here.